Part Number Hot Search : 
2A24D00D HXX06 LBS07202 LM324N MAX7456 22500 1N646908 1LT1G
Product Description
Full Text Search
 

To Download AP4500GM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AP4500GM
Pb Free Plating Product
Advanced Power Electronics Corp.
Simple Drive Requirement Low On-resistance Fast Switching
D1 G2 S2 D2 D1 D2
N AND P-CHANNEL ENHANCEMENT MODE POWER MOSFET
N-CH BVDSS RDS(ON) ID P-CH BVDSS RDS(ON) ID
20V 30m 6A -20V 50m -5A
SO-8
S1
G1
Description
The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and costeffectiveness. The SO-8 package is universally preferred for all commercialindustrial surface mount applications and suited for low voltage applications such as DC/DC converters.
G1
D1
D2
G2 S1 S2
Absolute Maximum Ratings
Symbol VDS VGS ID@TA=25 ID@TA=70 IDM PD@TA=25 TSTG TJ Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Continuous Drain Current Pulsed Drain Current
1 3 3
Rating N-channel 20 12 6 4.8 20 2.0 0.016 -55 to 150 -55 to 150 P-channel -20 12 -5 -4 -20
Units V V A A A W W/
Total Power Dissipation Linear Derating Factor Storage Temperature Range Operating Junction Temperature Range
Thermal Data
Symbol Rthj-a Parameter Thermal Resistance Junction-ambient
3
Value Max. 62.5
Unit /W
Data and specifications subject to change without notice
200609031
AP4500GM
N-CH Electrical Characteristics@Tj=25oC(unless otherwise specified)
Symbol BVDSS
BVDSS/Tj
Parameter Drain-Source Breakdown Voltage
2
Test Conditions VGS=0V, ID=250uA
Min. Typ. Max. Units 20 0.5 0.037
30 45 1.2 1 25 15 480 -
V V/ m m V S uA uA nC nC nC ns ns ns ns pF pF pF
Breakdown Voltage Temperature Coefficient Reference to 25, ID=1mA
RDS(ON)
Static Drain-Source On-Resistance
VGS=4.5V, ID=6A VGS=2.5V, ID=5.2A
18.5 9 1.8 4.2 29 65 60 50 300 255 115
VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (Tj=25 C) Drain-Source Leakage Current (Tj=70oC)
o
VDS=VGS, ID=250uA VDS=10V, ID=6A VDS=20V, VGS=0V VDS=16V, VGS=0V VGS=12V ID=6A VDS=10V VGS=4.5V VDS=10V ID=1A RG=6,VGS=4.5V RD=10 VGS=0V VDS=8V f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
100 nA
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
2
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2
Test Conditions IS=1.7A, VGS=0V IS=6A, VGS=0V, dI/dt=100A/s
Min. Typ. Max. Units 26 17 1.2 V ns nC
Reverse Recovery Time Reverse Recovery Charge
AP4500GM
P-CH Electrical Characteristics@Tj=25 C(unless otherwise specified)
Symbol BVDSS
BVDSS/Tj
o
Parameter Drain-Source Breakdown Voltage Static Drain-Source On-Resistance Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (T j=25 C) Drain-Source Leakage Current (T j=70 C)
o o
Test Conditions VGS=0V, ID=250uA
2
Min. Typ. Max. Units -20 -0.5 -0.037
50 90 -1 -1 -25 20 -
V V/ m m V S uA uA nC nC nC ns ns ns ns pF pF
Breakdown Voltage Temperature Coefficient Reference to 25, ID=-1mA
RDS(ON) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
VGS=-4.5V, ID=-2.2A VGS=-2.5V, ID=-1.8A VDS=VGS, ID=-250uA VDS=-10V, ID=-2.2A VDS=-20V, VGS=0V VDS=-16V, VGS=0V VGS= 12V ID=-5A VDS=-16V VGS=-4.5V VDS=-10V ID=-2.2A RG=6,VGS=-10V RD=4.5 VGS=0V VDS=-20V f=1.0MHz
2.5 14 2 5.6 10 11 58 38 400 160
Gate-Source Leakage Total Gate Charge
2
100 nA
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
2
940 1500 pF
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2
Test Conditions IS=-1.8A, VGS=0V IS=-2.2A, VGS=0V, dI/dt=100A/s
Min. Typ. Max. Units 25 21 -1.2 V ns nC
Reverse Recovery Time Reverse Recovery Charge
Notes:
1.Pulse width limited by Max. junction temperature. 2.Pulse width <300us , duty cycle <2%. 3.Surface mounted on 1 in2 copper pad of FR4 board ; 135/W when mounted on Min. copper pad.
AP4500GM
N-Channel
25
25
T A =25 o C ID , Drain Current (A)
20
ID , Drain Current (A)
4.5V 3.5V 3.0V 2.5V
T A =150 o C
20
4.5V 3.5V 3.0V 2.5V
15
15
10
10
V GS =2.0V
5
V GS =2.0V
5
0 0 1 2 3 4 5
0
0
1
2
3
4
5
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
45
1.8
40
I D =6A T A =25 o C Normalized RDS(ON)
1.6
I D =6A V GS =4.5V
1.4
RDS(ON) (m )
35
1.2
30
1.0
25
0.8
20 2 3 4 5
0.6
-50
0
50
100
150
V GS (V)
T j , Junction Temperature ( o C)
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
1.5
100.00
10.00
1
1.00
T j =150 o C
T j =25 o C
VGS(th) (V)
0.5 0 -50
IS(A)
0.10
0.01
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
0
50
100
150
V SD (V)
T j ,Junction Temperature ( o C)
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
AP4500GM
N-Channel
f=1.0MHz
6
1000
5
VGS , Gate to Source Voltage (V)
I D =6A V DS =10V
4
Ciss C (pF)
Coss
100
3
2
Crss
1
0
10 0 2 4 6 8 10 12
1 5 9 13 17 21 25 29
Q G , Total Gate Charge (nC)
V DS (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
Normalized Thermal Response (Rthja)
Duty Factor = 0.5
10
0.2
1ms ID (A) 10ms
1
0.1 0.1
0.05
100ms 1s
0.1
0.02 0.01
PDM
0.01
t T
Single Pulse
T A =25 C Single Pulse
o
10s DC
Duty factor = t/T Peak Tj = PDM x Rthja + Ta Rthja=135o C/W
0.01
0.001
0.1
1
10
100
0.0001
0.001
0.01
0.1
1
10
100
1000
V DS (V)
t , Pulse Width (s)
Fig9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
VDS 90%
VG QG 4.5V QGS QGD
10% VGS td(on) tr td(off) tf Charge Q
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform
AP4500GM
P-Channel
25
25
T A =25 o C
20
-ID , Drain Current (A)
-ID , Drain Current (A)
4.5V 4.0V 3.5V 3.0V
T A =150 o C
20
4.5V 4.0V 3.5V 3.0V
15
15
10
V GS =2. 5 V
10
V GS =2. 5 V
5
5
0 0 1 2 3 4 5
0
0
1
2
3
4
5
-V DS , Drain-to-Source Voltage (V)
-V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
1.8
90
I D =-2.2A T A =25 Normalized RDS(ON)
1.6
I D =-2.2A V GS = -4.5V
80
1.4
RDS(ON) (m )
70
1.2
60
1
50
0.8
40
30
0.6 2 3 4 5
-50
0
50
100
150
-V GS (V)
T j , Junction Temperature ( o C)
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
1
100.00
0.8
10.00
1.00
T j =150 o C
T j =25 o C
-VGS(th) (V)
1.3 1.5
0.6
-IS(A)
0.4
0.10
0.2
0.01
0 0.1 0.3 0.5 0.7 0.9 1.1 -50 0 50 100 150
-V SD (V)
T j ,Junction Temperature (
o
C)
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
AP4500GM
P-Channel
f=1.0MHz
6
10000
-VGS , Gate to Source Voltage (V)
5
I D =-5A V DS =-16V
1000
4
Ciss Coss Crss
3
C (pF)
100 10 1
2
1
0 0 4 8 12 16 20
5
9
13
17
21
25
29
Q G , Total Gate Charge (nC)
-V DS (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
Duty Factor = 0.5
10
1ms 10ms
Normalized Thermal Response (R thja)
0.2
0.1
0.1
-ID (A)
0.05
1
100ms 1s
0.02
0.01
PDM
0.01
t T
Single Pulse
0.1
T A =25 C Single Pulse
0.01
o
10s DC
Duty factor = t/T Peak Tj = PDM x Rthja + T a Rthja=135 oC/W
0.001 0.1 1 10 100 0.0001 0.001 0.01 0.1 1 10 100 1000
-V DS (V)
t , Pulse Width (s)
Fig9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
VDS 90%
VG QG -4.5V QGS QGD
10% VGS td(on) tr td(off) tf Charge Q
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform


▲Up To Search▲   

 
Price & Availability of AP4500GM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X